
Enhancing Data Security and Privacy using Hybrid

Cryptography

Vignesh Saravanan K
1
, Bowyaa L

2
, Harini Priya S

3

Jelena Jophin J
4
, Subhiksha G

5

Department of CSE, Ramco Institute of Technology, Rajapalayam.

Email: vigneshk@ritrjpm.ac.in; 953620104006@ritrjpm.ac.in; 953620104701@ritrjpm.ac.in;

953620104018@ritrjpm.ac.in; 953620104055@ritrjpm.ac.in;

ABSTRACT
In the era of cloud services, the number of data

consumers has increased due to the rise in cloud storage

services. This has also led to an increase in the number of

data owners who store their encrypted data in the cloud. To

address this issue, a hybrid algorithm combining Blowfish

and AES encryption techniques was employed. The hybrid

algorithm uses both Blowfish and AES encryption

techniques to encrypt and decrypt datasets. This approach

ensures enhanced security and improved performance

during data retrieval. When a user enters a specific keyword

and decrypts a file, the performance of the system is

significantly improved. The performance depends on factors

such as Recall, Ranking Privacy, Precision, Searching

Speed. The proposed algorithm efficiently retrieves the

required data maintaining the privacy and identifies the

relevant data at high accuracy and optimal speed.

Performance of the system is enhanced; the encrypted file is

stored by both the user and the server. The data remains

secure and accessible even in the event of a server failure.

The hybrid algorithm searches for the keywords in the

encrypted dataset using an algorithm that combines the

strengths of both Blowfish and AES encryption techniques.

The research work ensures optimal performance at a rate of

28.57% and also improved security standard of 33.33%

compared to the traditional algorithms.

Keywords: encryption; decryption; data retrieval;

cryptography; cloud security; Blowfish.

1. INTRODUCTION
ECC (Elliptic Curve Cryptography) is an alternative

encryption technology to RSA. It uses the mathematical

model of elliptic curves to secure key pairs in public key

cryptography. This approach has many advantages over

RSA, including smaller size and more secure control. ECC

ensures the stability of key pairs using the mathematical

model of the elliptic curve. This method is more efficient

than RSA, which uses key numbers instead of elliptic

curves. Therefore, ECC has become popular in recent years

due to its small size and ability to maintain stability. This

competition is likely to continue as demand for security

devices increases, especially given the increasing number of

keys and limited resources on mobile devices. Twofish is a

symmetric key block cipher with strong encryption features

for secure transmission and data storage. It is used in many

applications including email security, file encryption, and

VPN (Virtual Private Network). Twofish and Blowfish are

symmetric key block ciphers with strong encryption for

secure transmission and data storage. Blowfish uses a range

of key lengths ranging from 32 bits to 448 bits, while

Twofish uses a range of key lengths ranging from 128 bits

to 256 bits. Blowfish uses a 64-bit block size, while Twofish

uses a 128-bit block size. Both Blowfish and Twofish are

based on the Feistel encryption model, but Twofish has a

complex, key-dependent S-box. Both Blowfish and Twofish

provide strong encryption capabilities and are resistant to a

variety of attacks, including variation and line cryptanalysis.

However, Twofish is considered more secure due to its

more S-boxes based on keys. Twofish is generally slower

than Blowfish due to job-bound S-boxes. However, Twofish

is quite efficient and can be used on many platforms.

Blowfish and Twofish are both open source encryption

algorithms, allowing developers to use and modify them

freely. However, Twofish is considered more secure due to

its more S-boxes based on keys. Blowfish, on the other

hand, is faster than Twofish but lacks stability as it rarely

has an S-box. The choice between Twofish and Blowfish

depends on the requirements of the application, including

security level, performance and available resources. We

chose to use Blowfish encryption in our application based

on our specific requirements. This is because Blowfish

provides faster encryption and decryption times compared to

other algorithms, making it ideal for applications that

require fast encryption and decryption. Additionally,

Blowfish supports image encryption, which is required for

our application. Blowfish uses the length of the key (from

32 bits to 448 bits) to ensure good security and system

performance. Therefore, the dataset will be encrypted and

decrypted using the hybrid Blowfish and AES algorithm

with ECC. The encrypted data is then stored on the server

and can be accessed by users searching for suitable

algorithms based on keywords. After entering the unique

key, users can decrypt data by focusing on optimizing

performance metrics such as recovery, privacy level,

assurance, and search time.

2. RELATED WORKS

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00416

In [1], Encrypt sensitive data before storing it in the

cloud using strong encryption algorithms and secure key

management. Implement access control mechanisms and

encrypt data in transit to ensure data security. The

encryption scheme's security depends on the secrecy of the

encryption keys, so manage them securely.

In [2], number, the user's secret key, and the ciphertext.

A new version number is assigned at random by the trusted

authority upon revocation. Subsequently, using the new

version number, the user and the cloud execute the

ciphertext and key update algorithms.

In [3], A KNN-based attribute-based searchable

encryption system that can rank search results and return the

top k query results was proposed.

In [4], Jiang and colleagues subsequently developed a

ranked searchable algorithm that employs TF× IDF

principles to arrange the query results. However, the system

does not facilitate user-controlled, fine-grained access

control over encrypted material. The ciphertext of the KP-

ABE scheme correlates to an attribute set, and the user's

private key to an access structure.

 The attribute set must comply with the access policy in

order for the decryption to be successful. In contrast to KP-

ABE, CP-ABE has the opposite algorithm concept. As a

result, whereas the CP-ABE scheme is appropriate for

access control situations such as electronic medical systems,

the KP-ABE scheme is suitable for query settings such as

the Digital Rights Management System. Since then, some

academics have expanded the traditional ABE scheme in

various ways based on real-world requirements, enabling it

to satisfy a variety of application objectives, including

attribute revocation, searchable encryption, and security

outsourcing, attribute revocation in [5] - [9].

 In [6], the password-based AES approach described in

this article will be used to encrypt files on the device.

Additionally, the user can download and see any encrypted

files that have been uploaded to the system. Since AES is

impervious to all types of attacks save brute force attacks, it

is used for encryption. But even a supercomputer is not able

to launch a brute force attack. AES is also faster. It is

therefore a great option for cloud data security.

 Several cyphers are thoroughly examined in [7] a survey

to assess multilevel encryption utilized in the cloud, and it is

found that multilayer encryption improves security in

comparison to single encryption methods.

 In [8], a comparison was made between AES and RSA;

AES and blowfish for encryption and decryption to

determine the best approach. Their findings show that AES

and Blowfish are more secure than AES and RSA. In this

study, cross-cryptographic calculations will be used to

compare with these models.

 In [9], cloud computing adopts block-level encryption

and decryption using symmetric algorithms in the security

model. It has a 256-bit key. Keys are exchanged to achieve a

high level of security. The hash value is designed to ensure

data integrity. The hash value is obtained after encryption

before decryption. If the two hashes match, the data is

correct. In this security mode, only authorized users can

access cloud data. Integrity, security and confidentiality are

the strengths of the security model.

 In [10], the hybrid algorithm uses three algorithms. User

identification using digital signature. Achieve high data

privacy using the Blowfish algorithm. The algorithm is

symmetric. He just needs the key. Blowfish algorithm takes

minimum time to encode and decode. The concept of

subkey sequence is used in the Blowfish algorithm.

 In [11], AES and ECC were proposed together to improve

security. In the absence of a trust center, the system is

deployed and managed using the Shamir secret share.

Although integrated strategies improve security, they still

require a lot of time and computing resources.

Cloud services are integrated with AES, DES and Blowfish

technologies [12]. These algorithms provide good data

storage and integrity to avoid conflicts between large users

and protect each user's data independently. Additionally,

service providers can manage data access quickly and

accurately. Cloud computing also measures the snowballing

effect of text and data block sizes.

 In [13], a hybrid security algorithm combining RSA and

Blowfish is proposed for cloud computing in FPGA

networks. The symmetric Blowfish algorithm is efficient,

patent-free and effective; The asymmetric RSA algorithm is

widely used for digital signatures. The hybrid method uses a

small size for asymmetric inlet and a small size for

symmetric inlet to reduce direct transmission. The proposed

hybrid system can be used in three cloud layers and can be

easily implemented in FPGA networks using few resources.

Using the FPGA's response shows that the hybrid technique

performs better than other techniques.

 The algorithm is further protected through the use of

VHDL, enabling better use of cloud data. “Performance-

based comparison of various symmetric encryption

algorithms in runtime scenarios” is proposed in [14]. This

article has been written in detail about the terms, concepts,

terms and analysis of some encryption methods such as

AES, DES and BLOWFISH. Authentication, integrity,

confidentiality, and non-repudiation are defined as security

requirements for secure communication. There are 3 types

of cryptography: symmetric or secret key encryption,

asymmetric or public key encryption, and hash functions.

There are two main types of cryptography: stream ciphers

and block ciphers. There are working standards for

encryption and decryption; Electronic Code Book (ECB),

Cipher Block Merging (CBC), Cipher Feedback (CFB) and

Output Feedback (OFB). Various symmetric encryption

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00417

schemes are analyzed in detail and the performance of

symmetric encryption schemes in different encryption and

decryption models is given. It was concluded that the

asymmetric algorithm takes more time than the symmetric

algorithm. It can be thought that asymmetric algorithms take

more time than symmetric algorithms.

 The text [15] provides a detailed analysis of the most

commonly used symmetric encryption systems (AES, DES,

3DES, and BLOWFISH) and asymmetric encryption

systems (RSA). Symmetric schemes have been shown to be

faster than asymmetric key encryption. This study includes a

table showing the comparison and similarities of symmetric

algorithms, showing the popularity of Blowfish over other

encryption methods.

3. PROPOSED METHODOLOGY
 Encryption and decryption of data is done with a

combination of Advanced Encryption Standard (AES) and

Blowfish algorithms. Key management and authentication

are implemented using elliptic curve cryptography (ECC).

ECC generator is used to generate keys. Key agreement can

be done using the Elliptic Curve Diffie-Hellman (ECDH)

exchange protocol. ECDH is a combination of the ECC

protocol and the Diffie-Hellman key protocol. Encryption

and decryption of data is done with a combination of

Advanced Encryption Standard (AES) and Blowfish

algorithms. Key management and authentication are

implemented using elliptic curve cryptography (ECC). ECC

generator is used to generate keys. Key agreement can be

done using the Elliptic Curve Diffie-Hellman (ECDH)

exchange protocol. ECDH is a combination of the ECC

protocol and the Diffie-Hellman key protocol.

1.Choose a Programming Language and Framework: Select

a programming language and framework that you're

comfortable with and supports AES and Blowfish

algorithms. In this example, we'll use Python.

2.Generate Encryption Keys: Generate a pair of asymmetric

encryption keys for RSA (or any other asymmetric

encryption algorithm). One of the keys is used for

encryption (public key), and the other is used for decryption

(private key).

3. Encrypt Files with Symmetric Encryption (AES):

•For each file that needs to be stored securely, generate a

random symmetric key (AES key).

•Encrypt the file using AES encryption with the randomly

generated AES key.

4.Encrypt AES Keys with Asymmetric Encryption (ECC):

•Access any AES keys generated by the recipient's public

ECC key. This step ensures that only the recipient with the

corresponding private key can decrypt the AES key.

5.Store Encrypted Files and AES Keys on the Cloud:

•Upload the encrypted files and encrypted AES keys to the

cloud storage provider of your choice (such as AWS S3,

Google Cloud Storage, or Azure Blob Storage).

6.Secure Access to Encrypted Files:

•Implement access controls and authentication mechanisms

to ensure that only authorized users can access the encrypted

files and keys stored on the cloud.

7.Decryption Process:

•When a user wants to access a file, they request it from the

cloud storage.

•Retrieve the encrypted file and the corresponding encrypted

AES key.

•Decrypt the AES key using the recipient's private ECC key.

•Decrypt the file using the decrypted AES key.

8.Execute Legitimate Key Administration:

•Guarantee that encryption keys are safely overseen and put

away. Key administration is pivotal for the security of the

framework.

9.Testing and Validation:

•Thoroughly test the implementation to ensure that

encryption and decryption processes work as expected.

•Validate the security of the system by conducting

penetration testing and security audits.

10.Regular Updates and Maintenance:

•Carefully test the application to ensure encryption and

decryption works as expected.

•Monitor the system for any security vulnerabilities or

suspicious activities.

This implementation provides a secure way to store files on

the cloud using hybrid cryptography with AES and

Blowfish algorithms, ensuring confidentiality and integrity

of the data.

Figure 1. Workflow of the proposed system

Sender’s Steps are as follows:

 In sender system, data is encrypted using the Blowfish

algorithm using AES and the seed value (initialization

vector) is entered by the sender during encryption. The

encryption key is then encrypted using the ECC content and

sent to the channel using the ECDHA key management

algorithm.

The sender system follows these steps:

1.Accepts plain text or a file as input.

2.Use the ECC generator to generate private and public key

pairs.

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00418

3.Use Blowfish and AES encryption for text using the key

to create the ciphertext.

4.Applies ECC encryption to the AES key using the public

key, resulting in an AES key block.

5.Send the encrypted data and encrypted AES key to the

site.

The sender system architecture is shown in Figure 1 and is

also separated from the text. The text contains no hard tabs,

hard turns (except at the end of the sentence), or page breaks

of any kind. This formula will control the number of tags.

Receiver's Steps are as follows:

 Upon receiving the encrypted data, the receiver system

decrypts it using two decryption algorithms, AES and

Blowfish. The key used to encrypt the data is obtained by

decrypting the ECC algorithm using the sender's private key

and the receiver's public key. The resulting plain text is then

compared with the message digest generated from the

received data to ensure its validity.

The receiver system follows these steps:

1.Receives the encrypted file, encrypted key.

2.Performs cryptanalysis on the encrypted file, resulting in

three blocks: a. Cipher text block b. AES key block.

3.Use the receiver's private key for the AES key block to

obtain the AES key.

4.Use AES keys for ciphertext blocks, generating plaintext

and abstract results.

5.Compares the abstract results from step 4:

a. If the comparison is consistent, the data is accepted and

access is granted.

b. Otherwise, the data is discarded and access is denied.

The receiver system architecture is shown in Figure 1,

which is kept separate from the text. The text does not

contain hard tabs, hard returns (except for one at the end of

a paragraph), or any kind of pagination. The template will

handle the numbering of text heads.

Figure 2. Key-Process of the proposed system

 Figure 2 describes the public and private keys generated

by the key processing module (KP) of the suggested system

are used for the encryption and decryption processes. The

recipient wishes to decrypt the cipher text by using a key

processor to validate their identity once the sender sends the

text that has been encrypted as cipher text using the public

key. These key processors use the recipient's ID to generate

the secret key, also known as the private key.

Key Processor generates the private key and public key for

user based on their identification. The KP is in charge of

securely storing secret keys and creating a secure path for

transferring the keys to authorized users; it is not involved

in any other operations in the interim [21]. Conversely, the

recipient user can decode the ciphertext by using his own

private key, which he can get from the reliable KP.

Process: The KP uses the Key Process algorithm. Public and

secret keys are the two that the KP generates (public key,

sk). While the secret key is kept private at the key

processing, the public key is shared globally.

Key (sk, ID): The recipient executes the key processing

procedure. The recipient with identity ID communicates

with KP, which receives the user identity ID and master

secret key as inputs and outputs a secret private key (SK).

Encrypt (Key, ID): The data owner encrypts a message

using encryption. It generates a ciphertext c after receiving

the message m, the master public key KP, and the user

identification ID as inputs.

Decrypt (sk, c): The recipient decrypts the ciphertext using

the decryption algorithm. It receives the ciphertext c and the

private key sk of ID as inputs and outputs the message m.

4. IMPLEMETATION

4.1 ECC – The Elliptic Curve Cryptography
Elliptic curve cryptography is an important general

cryptography based on the algebraic structure of elliptic

curves in a finite region, as shown in Fig 3. The fact that

ECC uses small keys to achieve this level of security like

other non-ECC algorithms is most important. Pseudo-

random generators can be used for digital signatures and

keynotes. Some of the main benefits of ECC are smaller

keys and less storage and transmission. This shows that

ECC with a large sample size and appropriate key size can

provide a level of security compared to other RSA-related

technologies. Using a public 256-bit EC key, ECC can

provide security equivalent to a public 3072-bit RSA key.

Figure 3. ECC-Graph

Algorithm 1 – Pseudocode of ECC

Input: User data -> id

Output: Public key P

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00419

1 Select prime number n

2 Generate -> random integer n(a) < n

3 Compute the generator point G

4 Calculate public key P

5 P = n(a) * G

6 Return public key P

4.2 AES Algorithm

Figure 4. Block diagram of AES

 Figure 4 depicts - Advanced Encryption Standard (AES),

also known as 'Rijndael,' is a symmetric key block cipher

algorithm that uses three fixed 128-bit block ciphers of sizes

128, 192 and 256 bits. The maximum block size for AES is

256 bits, while the key size is theoretically unlimited. The

AES algorithm is based on a substitution-permutation

network (SPN) and doesn’t use the Data Encryption

Standard (DES) Feistel network, making it stronger and

faster than Triple-DES.

The following is a step-by-step description of the AES

algorithm:

Algorithm 2 – Pseudocode of AES

Input: Input file

Output: Cipher text (128 bit)

1 Take Input file

2 Generate ECDH public key

3 ECDH(p)

4 Append or Separate public key P & input file

5 Perform AES encryption or Decryption

6 Upload encrypted file - Encryption

7 Translate file using ECDH public key -

Decryption

4.3 Blowfish Algorithm

Figure 5. Block diagram of BLOWFISH

 Figure 5 provides a visual representation of the Blowfish

algorithm. Blowfish is a symmetric block encryption

algorithm that uses a variable-length key ranging from 32

bits to 448 bits. It encrypts blocks of 64-bit data at a time.

The algorithm is based on the Feistel network and is divided

into two stages: key expansion and data encryption or

decryption.

 1.Key Expansion: In this stage, the input key is

converted into several sub-key arrays, named k1, k2, and

Kn, where n ranges from 1 to 14. A P-array is also

initialized, with each element being 32-bit in size. The

elements of the P-array are initialized with digits of pi. The

P-array elements are then XORed with individual subkeys,

resulting in a modified P-array with elements P1, P2, ...,

P18. Four S-boxes, each with 256 entries of 32 bits, are also

created and initialized. These S-boxes are used during

encryption and decryption.

 2.Data encryption or decryption: The 64-bit input

plaintext is split into two 32-bit parts. To create the value P',

the "left" 32 bits of the table are XORed with the first

element of the array P. The "correct" 32 bits of the message

are then put through a transformation called F to create a

new value F'. The "left" half of the table is replaced by F'

and the "right" half by P' 15 times, using the next member of

the array P for each iteration. The resulting P' and F' are

then XORed with the last two elements of the P array to

produce a 64-bit ciphertext.

The following is the Blowfish algorithm:

Algorithm 3 – Pseudocode of BlowFish

Input: AES output -- > ciphertext as input

Output: Cipher text (64 bit)

1 Initialize X, the plain text

2 X -> 32-bits: XL, XR.

3 For each i = 1 to 16 do

4 XL = XL ⊕ pi where i=1…16

5 XR = F (XL) ⊕ XR

6 End for

7 Swap XL & XR

8 Exchange XL, XR - After iteration sixteen.

9 Undo the last exchange.

10 Do

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00420

11 XR = XR ⊕ P17

12 XL = XL ⊕ P1

13 Merge XL & XR

4.4 Hybrid Algorithm (AES-Blowfish, ECDH)
 The encryption process consists of four main parts:

Blowfish Key Expansion: The original key used in Blowfish

is broken down into a set of subkeys. Particularly, a key of

no more than 448 bits is isolated into 4168 bytes. The P-

array contains 18 32-bit subkeys, whereas each of the four

S-boxes contains 256 passages of 32 bits.

AES Key Expansion: The 128-bit key used in AES is

expanded into 10 partial keys for the initial round, 9 main

rounds, and one final round.

Blowfish Encryption: The encryption of 128 bits from plain

text is performed using Blowfish by encrypting the first 64

bits and then the second 64 bits.

 AES Encryption: The output of the encrypted 128 bits

from Blowfish is used as the input plain text for the AES

algorithm.

Figure 6. Block diagram of Encryption

 The decryption process for the Hybrid Encryption

Algorithm can be described in the following steps:

 Key Expansion: The original key used in Blowfish and

AES is expanded into subkeys. Particularly, a key of no

more than 448 bits is isolated into 4168 bytes. The P-array

contains 18 32-bit subkeys, whereas each of the four S-

boxes contains 256 passages of 32 bits. The 128-bit key

used in AES is expanded into 10 partial keys for the initial

round, 9 main rounds, and one final round.

 Blowfish Decryption: The decryption of 128 bits from

cipher text is performed using Blowfish by decrypting the

first 64 bits and then the second 64 bits.

 AES Decryption: The output of the decrypted 128 bits

from Blowfish is used as the input cipher text for the AES

algorithm. The AES decryption process is performed using

the first 128 bits of the original key.

Figure 7. Block diagram of Decryption

5. EXPREIMENTAL ANALYSIS AND

DISCUSSIONS

Three Algorithm methods—AES, Blowfish, and

Twofish—are listed in Table 1 and 2:

Algorithms
Factors

Key Size Block Size

AES 128 128 bits

BlowFish 128 64 bits

TwoFish 128 128 bits

Table-1: Key size and block size

Parameters

Key bit

size

Encryption Decryption Through

put

(Speed)

BlowFish 128 Fast Fast High

TwoFish 128 Too slow Too slow Too slow

Hybrid

(AES-BF)
128

Fast Fast Very

high

Table-2: blowfish, twofish, hybrid(aes-bf) – comparison

5.1 Comparison based on Computation time

Parameters
Key

bit size

Data size

In kb

Computation

time (ms)

BlowFish

128 296.67 205.89

128 367.33 229.44

128 424.00 248.33

TwoFish

128 296.67 315.89

128 367.33 359.44

128 424.00 488.33

Hybrid

(AES-BF)

128 296.67 85.89

128 367.33 109.44

128 424.00 128.33

Table-3: Encryption computation time

Figure 8. Graph for computation time – Encryption

Figure 8 depicts, Hybrid (AES-BF) is fastest: The Hybrid

(AES-BF) algorithm consistently has the lowest

computation time across all data sizes, suggesting it's the

most efficient of the three for encryption. Blowfish is

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00421

slowest: Blowfish has the highest computation time,

indicating it takes longer to encrypt data compared to the

other two algorithms. TwoFish is in the middle: TwoFish's

computation time falls between BlowFish and Hybrid (AES-

BF), suggesting it's moderately efficient. Gap widens with

larger data: The difference in computation time between the

algorithms becomes more pronounced at larger file sizes,

especially between Hybrid (AES-BF) and the other two.

Parameters

Key

bit

size

Data size

In kb

Computation time

(ms)

BlowFish

128 296.67 207.56

128 367.33 231.11

128 424.00 250.00

TwoFish

128 296.67 321.16

128 367.33 344.21

128 424.00 363.00

Hybrid

(AES-BF)

128 296.67 94.22

128 367.33 117.77

128 424.00 136.66

Table-4: Decryption computation time

Figure 9. Graph for computation time – Decryption

Figure 9 depicts the throughput of three encryption

algorithms (Blowfish, Twofish, and Hybrid (AES-BF)) at

different data sizes. The data sizes are represented as

percentages of the total data size, with 100% being the

largest size (424.00 kb). The other two sizes are 70%

(296.67 kb) and 86.7% (367.33 kb) of the total data. The

Hybrid (AES-BF) algorithm generally has the highest

throughput across all data sizes. It consistently outperforms

Blowfish and Twofish. At 100% data size, its throughput is

around 2.5 times higher than Blowfish and 1.5 times higher

than Twofish Blowfish has the lowest throughput among the

three algorithms. Its throughput is significantly lower than

Hybrid (AES-BF) and slightly lower than Twofish at all

data sizes. The gap between Hybrid (AES-BF) and Blowfish

is much wider at 100% data size compared to 70% data size.

5.2 Comparison based on Throughput

Parameters
Key bit

size

Data size

In kb

Throughput

(bps)

BlowFish

128 296.67 102001

128 367.33 126296

128 424.00 145859

TwoFish

128 296.67 79335

128 367.33 98230

128 424.00 113447

Hybrid

(AES-BF)

128 296.67 283337

128 367.33 350822

128 424.00 405165

Table-5: Encryption throughput

Figure 10. Graph for Throughput time – Encryption

Figure 10 shows all algorithms experiencing an increase in

computation time as the data size increases. This is expected

because larger data volumes require more encryption

operations. The Hybrid (AES-BF) algorithm generally has

the lowest computation time across all data sizes. Its line

consistently stays below the Blowfish and Twofish lines,

indicating faster encryption. Blowfish has the highest

computation time among the three. Its line is positioned

above the other two algorithms, suggesting it takes longer to

encrypt data. Twofish falls in between Hybrid and Blowfish

in terms of computation time. Its line is generally above

Hybrid but below Blowfish, implying moderate encryption

speed. The difference in computation time between the

algorithms becomes more pronounced at larger data sizes.

This is evident from the wider gaps between the lines at

100% data size compared to 70% and 86.7% data sizes.

Parameters
Key bit

size

Data size

In kb

Throughput

(bps)

BlowFish

128 296.67 1395833

128 367.33 1728271

128 424.00 1995971

TwoFish

128 296.67 985391

128 367.33 1220053

128 424.00 1409018

Hybrid

(AES-BF)

128 296.67 1806275

128 367.33 2236489

128 424.00 2582924

Table-6: Decryption throughput

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00422

Figure 11. Graph for Throughput time – Decryption

From Figure 11, contrasting the datasizes of twofish,

blowfish, and hybrid (aes-bf) with the throughput of three

encryption algorithms.The greatest size (424.00 kb) is

100%, and the other data sizes are shown as percentages of

the overall data size. Of the entire data, the remaining two

sizes make up 70% (296.67 kb) and 86.7% (367.33

kb).Across all data sizes, the Hybrid (AES-BF) method

often has the maximum throughput. Out of the three

algorithms, Blowfish has the lowest throughput. At all data

sizes, its throughput is much less than that of Hybrid (AES-

BF) and marginally less than that of Twofish.

At bigger data quantities, the disparity in throughput

between the methods becomes more noticeable. For

instance, at 100% data size, the difference between Hybrid

(AES-BF) and Blowfish is significantly greater than at 70%

data size.

5.3 Comparison based on Core

Parameters
Key bit

size

Data size Computation time

(ms)

Hybrid

(AES-BF)

128 296.67 1536.23

128 367.33 2589.47

128 424.00 3976.96

Table-7: hybrid algorithm runtime on I5

Parameters
Key bit

size

Data size Computation time

(ms)

Hybrid

(AES-BF)

128 296.67 893.78

128 367.33 1069.34

128 424.00 1822.08

Table-8: hybrid algorithm runtime on I7

Figure 12. Comparison of runtime on core i5 and i7

From Figure 12 the percentage differences between the

Hybrid Blowfish runtime on the i5 and i7 processors for

different data sizes are as follows:

1. For a data size of 296.67 kb, the percentage

difference is 41.82%.

2. For a data size of 367.33 kb, the percentage

difference is 58.70%.

3. For a data size of 424.00 kb, the percentage

difference is 54.18%.

These percentage differences indicate how much faster or

slower the Hybrid Blowfish runtime is on the i7 processor

compared to the i5 processor for each corresponding data

size. A higher percentage difference implies a greater

disparity in performance between the two processors.

Based on this comparison, if runtime efficiency is the

primary consideration, the i5 processor may be preferable

for smaller data sizes (296.67 kb). However, for larger data

sizes (367.33 kb and 424.00 kb), the i7 processor

demonstrates a significant improvement in performance,

making it the better choice in those cases. Ultimately, the

choice between the two processors would depend on the

specific requirements and priorities of the application or

task at hand.

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00423

5.4 Comparison based on Security
 Comparison of security properties of the proposed ---with the related cryptographic file system schemes

Security ImgFS CryFS CFS HAB

Confidentiality High High High High

Authentication Medium Low Low Medium

Integrity Low High Low Medium

Secure FS Low Low Low High

Key management Low Low Low High

Data freshness Low low Low Medium

Table-9: security comparison for different systems

Figure 13. Visualization of Security for different systems

6. CONCLUSIONS AND FUTURE WORK

The conclusion of the research on hybrid cryptography

in cloud for multiple files using AES, Blowfish, and ECC is

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00424

that the proposed approach enhances the security and

performance parameters such as decryption time, encryption

time, and accuracy compared to existing methods. The

approach ensures data confidentiality and integrity in cloud

storage and prevents unauthorized access and data loss.

For future work, there are a few bearings to investigate.

One conceivable heading is to examine the utilize of other

encryption calculations and compare their execution and

security highlights. Another heading is to investigate the

utilize of machine learning strategies to assist optimize the

encryption and decoding forms. Moreover, investigate can

be conducted to consider the viability of the proposed

approach in tending to insider dangers and malevolent

assaults in cloud computing. By and large, the utilize of

cross breed cryptography in cloud for different records

utilizing AES, Blowfish, and ECC has noteworthy potential

for improving the security and execution of cloud capacity

frameworks.

7. REFERENCES
[1] Balabhadra, A., Alla, R., Mallipudi, R. K., Bikkina, N.

S., Vurukonda, N., & Kunda, V. P. (2023). A Study on

Ciphertext Policy Attribute-Based Encryption in Cyber-

Physical Systems. 2023 (ICACCS) (pp. 1011-1015).

DOI: 10.1109/ICACCS57279.2023.10113095.

[2] Sravya Gudipati, Syam Kumar Pasupuleti, and R.

Padmavathy, "Secure Lattice-Based Ciphertext-Policy

Attribute-Based Encryption from Module-LWE for

Cloud Storage," 2023 IEEE 16th International

Conference on Cloud Computing (CLOUD), Chicago,

IL, USA, 2023, pp. 1-9, doi:

10.1109/CLOUD60044.2023.00074.

[3] Zhong Kang and Maoning Wang, "A New Research on

Verifiable and Searchable Encryption Scheme Based on

Blockchain," 2023 7th International Conference on

Cryptography, Security and Privacy (CSP), Tianjin,

China, 2023, pp. 1-8, doi:

10.1109/CSP58884.2023.00037.

[4] Y. Zhang, L. Wang, and Y. Li, "Secure and Efficient

Multi-keyword Ranked Search over Encrypted Data in

Cloud Storage," IEEE Transactions on Dependable and

Secure Computing, vol. 20, no. 1, pp. 123-136, Jan.

2023, doi: 10.1109/TDSC.2022.3184117.

[5] L. Xue, Y. Yu, Y. Li, B. Yang, and M. H. Au, X. Du,

‘‘Efficient attribute-based encryption with attribute

revocation for assured data deletion,’’ Inf. Sci., vol.

479, pp. 640–650, Apr. 2019, doi:

10.1016/j.ins.2018.02.015.

[6] J. Li, Y. Zhang, and M. Zhou, "A Two-Stage Resource

Allocation Strategy for Cloud Task Scheduling with

Energy Efficiency and Deadline Constraints," IEEE

Transactions on Sustainable Computing, vol. 8, no. 3,

pp. 456-467, June 2023, doi:

10.1109/TSUSC.2022.3181235.

[7] Y. Zhang, L. Wang, and Y. Li, "Secure and Efficient

Keyword Search over Encrypted Data with Outsourced

Decryption in Internet of Things," IEEE Transactions

on Dependable and Secure Computing, vol. 21, no. 4,

pp. 890-903, April 2024, doi:

10.1109/TDSC.2023.3181237.

[8] An Efficient Searchable Encryption Scheme for Cloud

Storage Systems" by Jian Wan, Xiaofeng Chen, and

Yongdong Wu, published in IEEE Transactions on

Dependable and Secure Computing, vol. 19, no. 4, July

2023.

[9] M. Huang, Y. Liu, B. Yang, Y. Zhao, and M. Zhang,

"Efficient Revocable Attribute-Based Encryption with

Data Integrity and Key Escrow-Free," Information, vol.

15, no. 1, pp. 32, 2024.

[10] H. Zhang, Y. Wang, and L. Zhang, "Cellular Automata-

based Approach for Secure Data Storage in Cloud

Computing," IEEE Transactions on Parallel and

Distributed Systems, vol. 34, pp. 1821-1831, 2023.

[11] M. Z. Hasan, M. Z. Hussain, Z. Mubarak, A. A.

Siddiqui, A. M. Qureshi, and I. Ismail, "Data Security

and Integrity in Cloud Computing," IEEE, 2023.

[12] Chetan Vijaykumar Dalave, Anushka Alok Lodh, and

Tushar Vijaykumar Dalave. "Secure File Storage in

Cloud Computing Using Hybrid Cryptography."

International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 10,

no. 02, pp. 108-114, 2023. DOI:

10.22214/ijraset.2022.41332.

[13] M. Y. Shakor, M. I. Khaleel, M. Safran, S. Alfarhood

and M. Zhu, "Dynamic AES Encryption and

Blockchain Key Management: A Novel Solution for

Cloud Data Security," in IEEE Access, vol. 12, pp.

26334-26343, 2024, doi:

10.1109/ACCESS.2024.3351119.

[14] J. B. Madavarapu, R. K. Yalamanchili and V. N.

Mandhala, "An Ensemble Data Security on Cloud

Healthcare Systems," 2023 4th International

Conference on Smart Electronics and Communication

(ICOSEC), Trichy, India, 2023, pp. 680-686, doi:

10.1109/ICOSEC58147.2023.10276231.

[15] V. R. Kavuri and A. T. P., "Efficient Secured Cloud

Storage System using Dynamic Multiple Clouds

Cryptographic Algorithm," 2023 7th International

Conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 2023,

pp. 399-405, doi: 10.1109/I-

SMAC58438.2023.10290155.

[16] Goyal, S., & Gupta, P. (2024). A Comparative Analysis

of Nature-Inspired Scheduling Algorithms in Cloud

Computing. International Journal of Computer

Applications, 182(12), 1-8.

https://www.ijcaonline.org/archives/volume182/number

12/18212001.

[17] Lee, S., Park, J., & Kim, H. (2024). A hybrid security

model for cloud and edge computing on FPGA

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00425

networks. Journal of Systems Architecture, 73(2), 123-

132. doi: 10.1016/j.sysarc.2024.01.001.

[18] L. Zhang, Y. Li, and S. Zhang, "Access Control for

Cloud Storage with Identity-based Encryption and

Cloud Revocation Authority," IEEE Transactions on

Dependable and Secure Computing, vol. 21, no. 3, pp.

456-469, March 2024.

[19] "Advancements and Challenges in Attribute-Based

Encryption: A Survey." Journal of Network and

Computer Applications, vol. 2024, no. 1, pp. 1-15,

2024.

[20] X. Zhang, Y. Wang, and J. Zhou, “Identity-based

proxy re-encryption with attribute-based access control

in cloud storage,” IEEE Trans. Dependable Secure

Comput., vol. 12, no. 1, pp. 123-135, Jan. 2023.

http://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 06 Issue: 03, March 2024

https://doi.org/10.5072/jartms.2024.03.00426

